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The lepton isodoublet ( e - ,  re), the "bare" nucleon isodoublet (n, p), and their 
antiparticles are shown to constitute a basis of the irreducible representation of 
the Clifford algebra C7. The excited states of these doublets, i.e., ( ~ - ,  v~), 
( z - , v , )  . . . . .  and (s ~ c+),(b ~ t +) are generated by the products ( e - ,  ve)| 
and (n ,p) |  where a = 2 - t / 2 ( e - e  + +VeFe) has the same quantum numbers 
as the photon state. The bare baryons s, c, b, t carry the strangeness, charm, 
bottom, and top quantum numbers. These lepton and bare baryon states axe in 
one-to-one correspondence with the integrally charged colored Han-Nambu 
quarks, and generate all the observed su(3) and su(4) hadron multiplets. 

1. INTRODUCTION 

Clifford algebras C,, (Clifford, 1878; Brauer and Weyl, 1935; Riesz, 
1958; Hestenes, 1966; Kahan, 1966) play an important role in physics, as 
evidenced by the Pauli spin algebra C 2 and the Dirac algebra C4. In 
increasing order, Eddington (1946) used C a in his fundamental theory, Barut 
and Haugen (1973) used C 6 in their formulation of conformally invariant 
massive spinor equations and the e - / ~  system, and Basri and Horwitz 
(1975) used C 7 to describe the hadronic mass spectrum. More recently, 
Casalbuoni and Gatto (1980) used higher-order Clifford algebras in a 
unified description of quarks and leptons. They use a gauge theory and 
orthogonal groups such as o(13, 1), that are generated by higher-order 
Clifford algebras. 
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The main goal of this paper is to show how C v and its tensor products 
can be used to generate all observed particle multiplets; dynamics is outside 
the scope of this paper. In particular, we use C 7, its tensor products, and an 
orbital o(4,2) algebra, to generate two sequences of isodoublets; one is the 
lepton sequence ( e - ,  Pe)' (~- - '  P/x), ('7"--, Pr) . . . . .  and the other is the baryon 
sequence (n, p), (s, c), (b, t) . . . . .  where n, p are the "bare"  nucleons, and 
s , c , b , t ,  are the "bare"  hyperons carrying the "strangeness," "charm," 
"bot tom,"  and " top"  quantum numbers (QN), respectively. All particle 
states are obtained as tensor products of these states. 

The essential properties of Clifford algebras and their physical identifi- 
cations are outlined in Section 2. These principles are applied to C 7 in 
Section 3, and to the Dirac subalgebra in Section 4. The associated orbital 
algebra is presented in Section 5. Then the eigenstates of the complete 
algebra are given in Section 6. An irreducible representation (IR) of the 
isospin algebra, commuting with the Dirac algebra, is derived in Section 7. 
Excited lepton and bare baryon states are constructed in Section 8, meson 
states in Section 9, and baryon states in Section 10. It is shown in Section l0 
that the lepton and "bare"  baryon states play the role of the integrally 
charged colored Han-Nambu  quarks. Regge trajectories are briefly dis- 
cussed in Section I 1, and the basic results are summarized in Section 12. 

2. CLIFFORD ALGEBRAS 

We outline here the basic facts about Clifford algebras necessary for 
this work. A (complex) Clifford algebra 6",, is generated by the identity e, 
and n elements e I . . . . .  e,, satisfying the relations 

e4 2=  - e ,  e,4eB = - eBe,4 for A 4~ B (1) 

The remaining elements of C,, are obtained from all possible products of e A. 
The number of elements that are a product of k different e A is (~.)-- 
n ! / k ! ( n  - k ) ! ,  and the total number of elements of C,, is Y'~-=0(~) = 2". 

For even n, there is no element besides the identity e that commutes 
with all the elements of C,, i.e., the center of C,  consists of e only. However, 
for odd n, the center consists of e and the element e l e 2 . . ,  e,,. 

If we set 

f ,  = ie t" " " e,, for n = 1,2, 5,6 (2a) 

f , , = - - e j . . . e , ,  for n = 3,4,7 (2b) 
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where i = ( -  1) t/2, then it follows from (I) that 

f .  2= + e  (3) 

and 

f,,) (4) 

are projectors (projection operators), i.e., they satisfy the relations 

(p , : ) 2  = p ,_ ,  P,,+P,,- = P , , - P , , +  = 0  (5a) 

P,,+ + P,,-  = e,  P,,+ - P, , -  = f ,  (5b) 

The first relation of (5a) shows that P, are idempotent, and thus have the 
two eigenvalues, 0 and 1, only. 

The set C,f of all even elements (products of even numbers of cA's) of 
C,, is a subalgebra of 6",, isomorphic to C,_ l, i.e., 

C.E~C,,_,CC,, (6) 

but the set of odd elements of C,, is not a subalgebra. In the case of odd n, 
linear combinations of the even and odd elements can be constructed with 
the help of the projectors P,,-" to form two disjoint subalgebras of C,,, 
namely, 

c, ,_,  -+ = e,,-* C, (7) 

C,,_ i + C,,_ 1 - = 0 ,  C,, = C,,_ i + 63C,,_ ~ - for odd n (8) 

This cannot be done for even n, since P,,• are not in the center. 
The decomposition (8) plays a key role in our theory, since for each 

odd n it introduces an absolutely conserved, two-valued (+-1) QN that 
distinguishes between the two disjoint subspaces C,,_ ~-+. In particular, the 
decomposition of C 7 is identified with the lepton and baryon subspaces, 
that of C 5 with the charged and neutral subspaces representing spin- l /2  
particle-antiparticle complexes. 

3. T H E  I N T R I N S I C  A L G E B R A  C 7 

The intrinsic algebra is defined to be the smallest Clifford algebra 
whose IR describes the minimum number of spin- l /2  particles that can be 
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used to generate all other particles. C 4 yields the Dirac algebra D which 
describes a sp in- l /2  particle-antiparticle complex. As stated at the end of 
the previous section, C 5 introduces the electric charge, C 6 completes the 
isospin algebra, and C7=C6+(9C6 - distinguishes between leptons and 
baryons. We interpret the four Dirac complexes described by C 7 to be the 
lepton isodoublet ( e - ,  p,.) and "bare"  nucleon isodoublet (n, p). 

The algebra C 7 is generated by the identity e and the seven elements 
e~ . . . . .  e 7 satisfying the relations (1). The total number of elements of C 7 is 
2 7 = 2 •  According to (6), C 7 contains the following descending 
chain of even subalgebras: 

CTe=(e,eAeA,,e4 ...eA,,eA,...eA,}=Cr, A, ,= I  ..... 7 

C6e={e, eBem, eB ."eB, ,e , . . .e6}=Cs,  B,,=I  . . . . .  6 

Cse=(e, ecec,,ec...ec,}=C4=--D, C,,=I . . . . .  5 (9) 

CaE={e, eaeb,el...e4}=C3, a, b = l  . . . . .  4 

C3 E=  ( e ,~ek}  = C  2, j , k  = 1,2,3 

(72 e =  {e,e,e2} = C , ,  C, e= (e)  = C  o 

The centers of C 7, C 5, C 3, and C~ consist of e and, respectively, the 
elements 

e t ' - ' e 7 = f T ,  i (e ,e6) ' ' ' (ese6)=iel ' ' 'e6=f6 

( e l e 4 ) - ' '  ( e3e4 )=e l  ' ' ' e 4 = f 4 ,  iele2= s (lo) 

It thus follows from (7) and (8) that 

C7=C6+(9C6 - ,  Cr*-=Pv*-CTeDC5 +-, Cs+=D+-+@D *-- ( l l a )  

where 

D +-+- = PT+-P6+-C5 e ( l l b )  

The further decomposition of each of the Dirac algebras D is discussed in 
the next section. We note here the existence of four such algebras describing 
Ue, e - ,  p, n and their antiparticles. 
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In accordance with the remarks made at the end of Section 2 and in 
this section, we have the following interpretation of eigenvalues: 

f7 = + 1 for leptons, and - 1 for baryons 

f6 = - 1 for charged fermions, and + 1 for neutral ones (12) 

The sign of f7 is the same for fermions and antifermions, and f6 = - 1  for 
both negative and positive charge fermions. We call f7 the lepton-baryon 
number, and f6 the charge number. The lepton number L and baryon 
number B, as well as the electric charge Q are defined in Section 7. 

4. THE INTRINSIC SPACE-TIME DIRAC ALGEBRA 

The Dirac algebra D -  C5 e =  C 4 introduced in (9) is generated by the 
identity e and the four elements 

d~--e~e 5 (a  = 1,2,3,4),  d o - - i d  4 (13) 

In the IR of C 7, d .  are 16• 16 matrices and are related to the usual 4 •  ~,. 
matrices by the relations 

d~ = 14| / x=0 ,1 ,2 ,3  (14) 

where 

12 02 ~,j= - ~ A =  (15) ' oj 02 

and oj ( j  = 1,2, 3) are the Pauli spin matrices 

1 __~) (16) o=(o  o1), o__(o ~ 
The quantities 1,, and 0. are the n • n unit and null matrices, respectively. 
The Dirac algebra in the context of C a has been investigated by many 
authors, and more recently by Greider (1980a, b), where other references can 
be found. 

According to (1), the elements d r satisfy the relations 

(d r,  d,,} -- d~,d~ + d~d~, = 2g~.e (17) 

- -goo=gl l  = g22 = g33 = --1, g~.=O for/~ ~ 1, (18) 
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The contravariant elements are defined by 

d o = gO~d., g~ = 8xv 

As usual, we define 

Y5 ~ i y ~  : - -  iYoYI72Y3 = 02  _ 12 

752 = + 14, 75 7o = - 7~,75 

Then 
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(19) 

(20) 

(21) 

- 14| = - id~ = idodld2d3 = ele2e3e4 =- f4 (22) 

f4 2 = + e, faa~ = -- d ~ f  4 (23) 

The spin angular momentum (AM) tensor 

So,, =�88 du, d~] = ~i[ eu, e,, ] =-- - S,,u (24) 

satisfies the commutation relations (CR) 

[ S~x, a~,] = i( gxoaK - g,oax ) (25) 

[Skx ,Su , , ]= i (g~ .Sxo  +gxuS~ , , -g~oSx , , - gx , . SKo)  (26) 

The structure of D is clarified further with the help of the additional 

S ~ 4 ~ - S 4 o ~ l [ d o , f 4 ] ,  So5 - - S s .  - � 8 9  o 

- i  
345 ~ - -  354  = T A  (27) 

(28) 

definitions 

The elements Spq(p, q = 0 . . . . .  5) satisfy the o(4,2) CR's 

[ Spq, Srs ] = i( gpsaqr --~ gqrSps - gprSqs - gqsSpr) 

where 

g 0 0  = - -  g l l  = - -  g 2 2  = - -  g33  - -  - -  g 4 4  = g55  = + 1 (29) 
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The intrinsic space-time Dirac algebra is thus given by 

D ------ C5 e - C 4 • (e, d#. S.~, f4d~, f4} : (e, Spq} ~ o(4.2) s (30) 

The four-dimensional nonunitary IR of 0(4, 2)s is shown in Section 6 to 
describe a sp in- l /2  particle-antiparticle complex. This IR of 0(4, 2)s coin- 
cides with the reducible representation D O 1/2~D~/2 o of the Lorentz 
subalgebra (Barut, 1964). 

Note that the electric charge Q does not enter the theory until the 
algebra is extended from C 4 to C 5. This is different from the interpretations 
by Greider (19808, b) and some other authors, who introduce Q of the level 
of C 4. Support for our procedure is provided at the end of Section 7, where 
Q and other additive QN's are defined with the help of the particle-antipar- 
ticle projector obtained from C a . 

If we carry out the decomposition (~3), we find that the subalgebra of 
the even elements of D, 

C4e = ( e, S~,~, f4 } = C3 (31) 

is the Lorentz algebra extended by f4. This algebra is generated by the 
"boosts"  S0j ( j  = 1,2, 3), and its even subalgebra is the Pauli spin algebra 

C3e=(e ,  Sjk)=C2 (32) 

2Sjk = 28  jk = eJkt(18| o,) (33) 

With the help of the chirality projector 

Pc• =P4-* =�89 (34) 

we may write 

c3 =c2- c2 § c2"- = e4-*c2 (35) 

The Pauli algebra C 2 is in turn generated by $23 and $31, and its even 
subalgebra is 

C I ----(?2 E= (e, 812 } (36) 

The even subalgebra of C I is simply 

C O ---- CI E = (e} (37) 
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By means of the spin projector 

P~-=~P2 • 1 8 9  f2), 

we may write 

f2 :-- iete2 = 2SI2 

C 1 = C o - ( ~ C o  + , Co+--~Po:Co 

5. THE EXTRINSIC SPACE-TIME ALGEBRA 

Basri and Barut 

(38) 

(39) 

[x~', yv] = O, [p~',y~] = 0  (42) 

In the equations of motion, pO is the Hamiltonian, and can be repre- 
sented b y p  ~ = P0 = iO/Ot -- iO o, when acting on a state ]q,). In the position 
representation, pg can be represented (without restriction on the action 
domain) by - pJ = pj = iO/ax  j -- @. Thus, keeping these remarks in mind, 
one can write 

p~, = i~ / ~x ~' =-- ia~ , P~' = g~'" Pv 

The orbital AM is defined by 

L~,~ =-- x~,p. - x~p~, (44) 

According to (41) and (42) it satisfies the same CR's (26) as S,., and in 
addition, 

[ L,,x, xu] = i( gx~,x~ -- g~,x x ) 

[L~x,P~,]=i(gx~,P.--g.~,Px) 

: o  

(45a) 

(45b) 

(46) 

(43) 

[x~,x~] = 0 ,  [p" ,  p"] = 0, [xJ, pk] = i r J  k (41) 

As usual, the components of x and p satisfy the CR's (h = 1) 

x = ( x  0 . . . . .  x3), x O = c t ,  p = ( p O  . . . . .  p3),  p~  (40) 

The Dirac algebra (30) is the intrinsic part of the space-time algebra. To 
describe the dynamics of elementary particles, we also need the extrinsic 
part of the space-time algebra, which is outside C 7. It is generated by the 
position and momentum 4-vectors 
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An orbital 0(4, 2)L algebra can be completed by defining further the 
components 

L.4 = - L4. ~ x . x - p +  �89 - x 2 ) &  

L.5 -- - Ls~ -- - x~x .p+ �89 + x 2 ) &  

L45 = - L54 =-- x .p  = x ~& (47) 

where 

x 2 = x . x  = x % ,  = (x~  2 - ~  (48) 

The components Lpq (p, q = 0 . . . . .  5) satisfy exactly the same CR's (28) as 
Spq, and thus generate O(4,2)L. 

Corresponding to the two 4-vectors (40), there are the two Lorentz 
invariants: 

-- x. d = x"d~, 

They satisfy the CR's 

[ s . , q  = - [ L .  

I s . , : ]  = - [ L .  

If we define the total AM by 

we find 

/~ = p-d = p~d~ = & d  ~' (49) 

(50a) 

(50b) 

Jpq ::- Spq -~- Lpq (51) 

[J.,,~] =0, [J,,,:]=o (52) 

which confirms the invariant character of (49). The components Jpq satisfy 
the same CR's (28) as Spq, and thus generate the total angular momentum 
algebra 0(4, 2)j. Moreover, J . .  satisfy the same CR's (26) as S~,., and 

(53a) 

[J~x, P~] = i( gx~P~ - g~.Px) (53b) 
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From these relations it can be verified that 

are, respectively, the operators for spatial rotation by an angle 0 about an 
axis specified by the direction cosines M k (e.g., h j2 = - h 21 is the projection 
of the rotation axis along the x 3 axis), and the Lorentz transformation 
(boost) along f i ,  where 

t a n h ~ - - f l = v / c = l F I / E ,  cosh~-- (1 - f12)  - ' / 2  (55) 

In general, for any quantity a, the Lorentz transformed quantity is 

( ) , t--.l 0 ~ ( 5 6 )  a '=  LaL  -~ L------exp 2 - ~ -  

Note that L ~  transform x ~ and p~, whereas S~ transform d r. If a =/~ = p~d~, 
then /~'=p'~d~ and both factors are transformed so that p ' = p  is an 
invariant. 

The intrinsic algebra C 7 is linked with the extrinsic space-time algebra 
through the two relations 

~ =  p~,d ~', J~,.= S~,. + L~,. (57) 

where p. is given by (43), d ~ by (14), S.. by (24), and L. .  by (44). 

6. EIGENVALUES AND EIGENSTATES 

From (40) and (17) we obtain 

p 2 =  p~'p~d~,d~= �89 ( d~,, d . }p~ 'p '=  g~,.p~'p'= E2 -- f f Z =  rnZ = pZ (58) 

This means that for m v ~ 0,/5 has the two eigenvalues + m. If ~b -+ are the 
corresponding 16-component eigenspinors, then we have the generalized 
Dirac equation 

ffq~ + = +- mq/+-, ~ = pl, d ~' (59) 

Note that q: -+ are simultaneous eigenstates of/~2 and p~,, i.e., 

/~2q, -+ = m2+ -+, p~%.• = p;%,-+, p. --i3. (60) 
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We interpret ~+ to be the state of a particle, and ~k- the state of the 
corresponding antiparticle, both with E > 0. This is different from the usual 
interpretation in which/~ 2 = E 2 - ~ = m 2 is solved for E = +__(p2 + m2)1/2, 
and these roots are taken to be the eigenvalues of the Hamiltonian. 

Note that (59) does not imply that the antiparticle has negative mass, 
since p is not the mass operator. Instead, we are taking 

p = - - p / m ,  /~q~-+ = --+ q~-- for rn ~ 0 (61) 

to be the particle-antiparticle operator; and thus 

P+-=_�89 (62) 

are the Lorentz-invariant particle-antiparticle projectors. In the rest flame, 
p = d o, and its eigenvalue is the principal QN, n, introduced in Barut 
(1968a). 

The Hermitian conjugate of (59) in the spinor space is 

- -  ~ b t d ~  = • inV., t ,  p~, = _ pu 

According to (14) and (15), 

dOd~,td o = d ~, (d~,)2 = gin' e (63) 

If we introduce the usual definition 

then we obtain 

qT-- q~td~ (64) 

~ •  = ~ + - m  (65) 

This shows that the eigenstate of ff when it operates to the left is ~ (not q2) 
with eigenvalues opposite in sign to those when it operates to the right, as in 
(59). 

To specify completely the eigenstates ~, it is necessary to find a 
complete set of mutually commuting operators (CSCO) that include/~ and 
pC We first consider the case m ~ 0, where it is possible to set pJ -- 0. 

As usual, we introduce the spin 4-vector 

W g - -  I s h / ~v  r - -  I Khp.v,r,  , C 0 1 2 3  = r e  ax~p. - v_c 3x~p~ = + 1 (66) 
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The second equality follows from (44) and (51), and Sx~ is given by (24). If 
we define the 3-vectors 

/ 7 - - ( p , , p2 ,  p3), g=($23 ,$3 , , S ,2 )  ' K=--(So,,So2,So3 ) (67) 

then it follows from (66) that 

w ~ ( w ~  f f •  ) (68) 

In the rest frame where t7= O, P0 = E = m, 

w--- (0, -- mff), S Z + = s ( s + l ) q ,  for/7---- 0 (69) 

and 

w 2 =-- w~w~ = -- rn2s(s + 1) 

The last relation holds in any frame, since w2 is Lorentz invariant. 
For m ~ 0, we adopt the following CSCO: 

f7, 41"6, P =- p~d~/m,  ~ ~ = p- = p P~ mZ,p,w 2 

and 

(70) 

where fT, f6 are given by (10) and (12), and h is the helicity. The operator f7 
distinguishes leptons from baryons, f6 distinguishes charged from neutral 
fermions, and/~ distinguishes particles from antiparticles. The mass is given 
by p2, the linear momentum by/T, the spin by w 2, and spin component 
along/7 by h or along x 3 by S 3. 

Another possible CSCO for m v ~ 0 is [see (34)-(39)]: 

(72) 

where f4 replacesp and f2 = 2S 3. The disadvantage of this set is that f4 is not 
Lorentz invariant, and the eigenstates are superpositions of particle and 
antiparticle states. 

For m = 0,/SqJ = 0, and/~ can no longer distinguish between particles 
and antiparticles. Moreover, we show below that the eigenvalues of f4 and 
- f 2  are identical, and thus there are only two linearly independent eigen- 
states for m = 0, as compared with four for m r 0. For this purpose, we 

or S3=----w3/rn f o r /T =6  (71) 
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choose the coordinate  axes so that  p =  ( p , 0 , 0 ,  p) .  Then  [see (14) and (22)] 

pqJ = p~'d#q, = p (  a o + a3)~ k = 0 

implies 

d3~b = - d0q~ or d3dot~ = d02qJ = ~b (73) 

and 

f4+ = + idodld2d3~ b = -- id ld2(  d3do~ b) = - f2~ b (74) 

In this case f a, - f z ,  and - 2 h  have the same eigenvalues. We interpret  
f4 as the par t ic le -an t ipar t ic le  opera tor  for m = 0. Which of the two eigenval- 
ues --+ 1 is to be associated with the particle is determined by  experiment .  
The  result is 

+ 1  
f4 = - 14@Y5 = - 1 

for massless particles 

for massless antipart icles 
(75) 

Thus  a massless particle always has negative helicity and its antipart icle 
positive helicity. 

We take (72) to be the CSCO for m = 0. Note  that pZ = / ~ 2 = 0  is 
diagonal,  but  p = p~'d, is not diagonal  even though pq, = 0. This is because 

f4dt~ = -- d ~ f  4. 
If q~ is a general state of C v, the 16 eigenstates of  C v may  be projected 

out of it by means of the four projectors  

P7 -+ = � 8 9  f7) ,  P6 -+ = �89 f6) (76) 

P -+ = �89 ( e • ,3 ) for m v ~ 0 (77a) 

P-+ = P 4  -~ = � 8 9  for m = 0  (77b) 

Ph -~ = �89 (78) 

where P-+ is the par t ic le -ant ipar t ic le  projector,  and Ph ~- is the helicity 
projector.  Thus  

~bA = P, oP, PA = PJ,~-P • P6-+P7 -+ , A = 1 . . . .  ,16 (79) 
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In particular, 
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Pv+P6+4, = [pe>, P7+P6-q.,=le - > 

PT-P6+ q ' =  In>, Pv-P6-4 '= IP) (80) 

The conservation of fT, .:6, P, and h can be deduced as follows: From 
(59), (60), and (65) we have 

;0,(qTa"~) = (q7:)+ + ~ (pq,) 

= ( w m  -+- m)q~/0q, = 0 

This implies the continuity equation 

ion( ~d~'~b ) = iOo( ~doqJ )+ iOj( ~dJ+ ) = 0 (81) 

For either box normalization or a wave packet, ~p vanishes at the 
boundary of the normalization volume. By means of the divergence theo- 
rem, we obtain 

= a s ,  = o 

where dSj is an area element. Thus 

fOo( ao+)a,x:Oof+* a3x=O (82) 

i.e., the normalization integral 

f4,~q~Ad3x is conserved (83) 

where the states ~b A in (83) stands for any of the states (79). Since 

PA t = PA = PA 2 (84) 

The statement (83) implies that 

(PA) =--f~PtPAqM3x is conserved (85) 
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TABLE I. Dichotomic Quantum Numbers of C7 
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Value 

Name Symbol + 1 -- 1 

Lepton-baryon No. f7 = e~. - �9 e 7 Leptons Baryons 
Charge No. fo = iel" " " e6 Charged Neutral 
Particle-antiparticle No. b = p~'~es/m Particle Antiparticle 
Helicity [see (71)] h = S . P / I P  I +1/2 --1/2 

Since p, ,  fT, f6, h, p mutual ly  commute ,  ~b, which is a superposi t ion of 
m o m e n t u m  eigenstates, may  be taken to be a s imultaneous eigenstate of  fT, 
f6, h, and p. Thus (85) implies that  the eigenvalues of fT, f6, h, and p are 
conserved. The  physical  in terpreta t ion of these Q N ' s  [see (14)] is sum- 
marized in Table  I. 

It  is shown in the next section that  L,  B, Q, Y, and 13 are funct ions of  
the opera tors  fT, f6,/~ only, and consequent ly  all their eigenvalues for  free 
leptons and bare  baryons  are conserved. 

7. T H E  I N T E R N A L  I S O S P I N  A L G E B R A  

It was seen in ( l l a )  that the intrinsic algebra C 7 is the direct sum of 
two C 6 algebras, one describing the leptons e - ,  u e and their antiparticles,  
and the other  the bare nucleons n, p and their antiparticles. We show now 
that  each C 6 can be writ ten as the direct p roduc t  

C 6 = D |  ) (86) 

where D = C 4 = C S is the Dirac  algebra discussed in Section 4, and C2(I  ) is 
a Clifford C 2 algebra that  commutes  with D. 

We define 

C2( I  ) = { e, c , ,  c2} (87a) 

where 

c l = i e l . . . e s = i 2 | 1 7 4  c2=-- ie6=12|174 (87b) 

c3 =-- f6 = let" "" e6 = 1 2 @ ~  14 : - -  iclc2 (87c) 
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Then 

cj z :- + e ,  [ c j ,  ck ] = icjktct 

c)d u ~- d~cj 

Thus C z ( I )  is a Clifford algebra that commutes with D; 

Basri and Barul 

(88) 

(89) 

and its direct 
product with D produces C 6. The full algebra C 7 is generated by C 6 and 

p7 -+ " 
The isospin components are identified with 

l j = � 8 9  j = 1 , 2 , 3  (90) 

and they satisfy the CR's of the isospin su(2) algebra 

[ I j , I k ]  = i e j k '  I ' (91) 

If (87) is combined with (13), (14), and (22), i.e., 

d a = e a e s = 1 4 |  f 4 = e l . - ,  e4=  --14| ~ (92) 

where a = 1,2,3,4, one obtains the complete IR of C 7, 

e,, -= --  d~e 5 = i l 2 |174  

e 6 = - ic 2 = - i 12| 02| 14, 

From (93) and (10) we obtain 

]'7 = as| 18, 

e5 = f 4 (  - -  icl ) = i12|176174 

e 7 = i f6 f  7 = i%|174 I4 (93) 

The particle projectors, according to (80), are 

P(Ve)  = PT+e6+P + , P ( e -  ) = e T + e 6 - P  + 

P ( n )  = PT-P6+P + , P ( p )  = P T - P 6 - P  + (95) 

The antiparticle projectors are obtained by replacing P+ by P - .  By means 
of (95) we obtain for the lepton number L, baryon number B, electric 

f6 = 12|174 14 (94) 
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charge Q, hypercharge Y, and 13, the following expressions: 

L = P ( u ~ ) + P ( e - ) - P ( ~ ) - P ( e + ) - - P T + p  (96) 

B = P ( p ) + P ( n ) - P ( f i ) - P ( f f ) - - P T -  ~ (97) 

L + B = fi, L - B = fvfi (98) 

Q= - P(e- )+ P(p)+ P(e + ) -  P(fi) = -fvP6-fi  

Y= -- P(ve)-- e ( e -  )+ P(p)+ P(n)+ P(~e) 

(99) 

+ P ( e + ) - P ( , f i ) - e ( ~ ) :  - L + B :  - fTP (100) 

213 = P(Ue)-- P(e- )+ P( p ) -  P ( n ) -  P(~e) 

(101) + P( e+ )-- P(P) + P(ff) = f6fTP 

The expression for Y is based on its interpretation as twice the average 
electric charge of an isomultiplet. This is reflected in the usual relation 

Q=�89 I 3 (102) 

which now follows automatically from the above definitions of Q, Y, and 13. 
Note that the opposite signs of the additively conserved QN's (96)-(101) 

for the particles and corresponding antiparticles originate completely from 
the projector P; and this is a confirmation of our interpretation of b as the 
particle-antiparticle projector. 

8. EXCITED STATES OF LEPTONS AND BARE BARYONS 

We have seen that the basis of the IR of C v can be interpreted as 
consisting of the lepton isodoublet (e - ,  ue), the bare baryons isodoublet 
(n, p), and their antiparticles. 

We show in this and the following sections that the other particle states 
can be obtained by means of tensor products of C v by itself. Let us consider 
Cv| C v, and in particular the states resulting from (e- ,  Pe)| (e+, ~e)- There 
are four such states: the isosinglet 

a~ + +re%) (103) 
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and the isotriplet 

b-  =--e-q,  b~  + - v e ~  ), b + =~vee + (104) 

The reason for the particular algebraic signs in a ~ and b ~ is as follows: 
Let 1I, 13) be an isospin eigenstate; and let I1/2, -+ 1 /2 )  = ] •  If C is the 
charge-conjugation operator, then 

CII ,  13) -~ --(--1)z-z31 I , -  13) (1o5) 

where the minus sign in frorit is conventional. Consequently, 

e + - - C e -  = C I - ) =  I + ) ,  ~ e = C ~ , , = C l + )  -= - I - )  (106) 

and the isospin states associated with a ~ and b ~ have the opposite signs from 
those in (103) and (104), as expected. 

The spin of the states (103) and (104) is either zero or one. Their 
intrinsic parity is odd, since we have fermion-antifermion systems, and e-  
and v e are assumed to have the same intrinsic parity. Thus the possible 
spectroscopic states are 

'So-,  3S,-;  ~Pi +, 3P0,1,2+; tD2-, 3D1.2,3-; " ' "  (107) 

where the " •  refers to the total parity. 
In the 3S~- and 3D~- states, a ~ has the same QN's as the photon, and 

b -+'~ the same QN's as the vector mesons W -~'~ From now on, it will be 
understood that the states (103) and (104) have J P =  1 . 

Let 

f ~ ( e - ,  v e, n, p)  (108) 

and consider the product fa. Since a is now bound with f ,  it need not have 
the same rest energy as in the free state. If the binding between f and a is 
magnetic, then the orbital AM, L > 0 (Barut, 1980a, 1982). For the smallest 
nonzero value L = 1, the total parity of fa is the same as f ,  since a has odd 
parity in the JR = 1- state. 

The algebra associated with fa (considered as a two-body system) 
consists of an external (center-of-mass) Poincar6 algebra, and an internal 
0(4, 2)j algebra (Barut, 1980b). For the most degenerate IR of the latter, the 
states are labeled by the total AM, J, and a "radial"  principle QN, t/j 
(Barut and Reczka, 1977). The (J ,  r/j) spectrum is shown in Figure 1. 
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Fig. 1. The fermion most degenerate unitary IR of o(4,2). 

We restrict ourselves here to 

L = 1, J =  1 / 2 ,  nj  = 3 / 2 , 5 / 2 , 7 / 2  . . . .  (109) 

The resulting states fa, which are considered to be excited states of  f ,  are 
interpreted as follows: 

( e - a ) 3 / 2 = t z  - ,  ( e - a ) 5 / 2 = r  - ,  ... 

( vea)3 /2=vu,  (Pea)5/2 --p . . . . .  

(na)3/2 = s o , (na)5/2 = b ~ . . . .  

( p a ) 3 / 2 = c  + , ( p a ) 5 / 2 = t  + . . . .  (11o) 

where the subscripts 3 / 2  and 5 / 2  are the nj values, and s, c, b, t are the 
strange, charmed, bottom, and top bare baryons. Note  that n j - - 3 / 2  
characterizes both ( / , - ,  v~,) and (s ,c) ,  while nj • 5 / 2  characterizes both 
(r , vT) and (b, t). Moreover, the parity of fa  is the same as that o f f .  

By including the ground states ( e - ,  v,,) and (n, p), we now have two 
sequences of isodoublets, the lepton sequence, 

( e - , v e ) ,  ( ~ - , u t , ) ,  ( r  , v , )  . . . .  (Ill) 

and the bare baryon sequence, 

( n , p ) ,  ( s , c ) ,  ( b , t )  . . . .  (112) 

The term "exited states" of leptons is thus justified, as they are obtained 
from the ground state with one additional quantum of a photonlike state a. 
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By using a similar model to construct the lepton excited states, Barut 
(1980c) found it possible to derive a semiclassical formula for the lepton 
masses, namely, 

N 
Y. (113) 

/11 e n = 0 

where N = 0, 1,2...  for e,/~, ~- . . . . .  
Instead of taking the isodoublets in (111) as elements of an infinite- 

dimensional IR of o(4,2)| one can take {e- ,  5- /~- ,  vt,} as a basis of a 
u(4) internal algebra, {e- ,  ~e,/~-, ~,, ~'-, v.} as a basis of a u(6) internal 
algebra, etc. This is because the fundamental IR of u(4) is four-dimensional, 
of u(6) is six-dimensional, etc.; and {e- ,  u,,} is a basis of a u(2) algebra, 
which is a subalgebra of u(4), u(6), etc. 

Similarly, we take {n, p, s, c} as a basis of a u(4) algebra, {n, p, s, c, b, t} 
as a basis of a u(6) algebra, etc. 

A fundamental IR of u(4) decomposes into a u(3)-triplet and u(3)-sing- 
let. If ( e - .  ~e) is retained as an isodoublet, then there are two ways of 
carrying out this decomposition, namely, 

l ~ ( e - , u e , l ~ - ; ~ ) i s t h e b a s i s o f t h e ( 1 ) 4 I R o f u ( 4  ) (114a) 

I '=--(e- ,5 , ,uu; t~-) is thebasisof the(13)7~IRofu(4)  (l14b) 

where (1)4 and (13)~ are the Young tableau designations of the IR's. In case 
l, ( e - ,  u~,~-) is a u(3) triplet and 1,~ is a u(3) singlet; whereas for l', 
(e - ,  ~e,U,) is a u(3) antitriplet and ~-  is a u(3) antisinglet, as,shown in 
Figure 2. We assume that each lepton state is an equal mixture of states 

-2 

v/.t 

e , . ~  ~ ~ . . u  e , I 

I I I i I 

_ _ _ I  ' o 
i p .  I 

I t q 
I -~ o +�89 i~ 

Y 
+ /.t 

ve i i J  ~ N ~ l  e + 

, ~ 1 
I I 
I - '~  0 + 1  13 

Fig. 2. Tile leptons and antileptons u(4) quartets. 
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belonging to / and l'. In essence this assumes that leptons are not pure u(4) 
and u(3) eigenstates. 

Bare baryons, on the other hand, are assumed to be pure u(4) eigen- 
states (no b' ;s introduced), namely (see Figure 3), 

b ~ ( n ,  p, s; c) is a basis of the (1)4 IR of u(4) (115) 

This assumption, as well as that of mixing 1 and 1', have to be justified 
dynamically. 

In order to take spin into account, we take 1, [', and b to be bases of the 
(1)~ IR of 

" ( 8 ) = U ( 4 ) i n t e m ~ ( ~ U ( 2 ) s p i n  (116) 

Then [, l', and #are the bases of the (17)~ IR of u(8). 
If B is the baryon number, L the lepton number, Y the hypercharge, S 

the strangeness, C the charm, Q the electric charge, and 13 the z component 
of isospin, then 

Q = � 8 9  3, Y = B - L + C + S  (117) 

The quantum numbers of l and l' are given in Table II. 

C S Y  

1 0 2  

0 0 1  

0 - 1 0  

CSY I 
G + 

, t ,  0 I 0 

/ 

/ / 
/ /  \N 

/ \ 

n p 0 0-1 

-I  0 - 2  go 

~ o 

\ N  / 
/ 

\N / / /  

C -  

I I I I I i 

, o ' ' o - g  +g  3 --~ 

Fig. 3. The bare baryons and antibaryons u(4) quartets. 
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TABLE II. Quantum Numbers of the Lepton u(4) Quartet 

/ 1' 

Q Y [ 3 C S C' S' 

e- --I --I I/2 0 0 0 0 

v e 0 --I -- I/2 0 0 0 0 

/L- --I --2 0 0 --I --I 0 

v~ 0 0 0 I 0 0 I 

9. MESONS 

In Section 8 we considered only four of the states resulting from 
C7| namely, (103) and (104). Most of the states f f  or f f  are not observed, 
and are presumably dynamically unstable, such as e e and pp. Few of 
these are stable, such as the duetron np. Since our main goal in this paper is 
to show how the observed families of states can be generated, we restrict our 
attention in this section to the observed meson states M, and in Section 10 
to the baryon states B. 

The meson states can be generated from ft. For bgT, if the binding is the 
result of a strong interaction that allows L = 0, then according to (107), the 
pseudoscalar (PS) mesons ( j e =  0 - )  are in the IS 0- state, and the pseudo- 
vector (PV) mesons ( j e =  1 - )  are in the 3S 1- state. On the other hand, if 
the strong interaction is indeed magnetic, for which L > 0, then a glance at 
(107) shows that the PV mesons must be in the 3D I-  state, while the PS 
mesons can be obtained from f f  in combination with v~, as shown in (128). 

Accordingly, for magnetic binding, the most general expression for the 
PV mesons is 

Mpv = bb(9lf(31'[' in 3D,- (118) 

Since b, l, P all belong to the same IR of u(4), the resulting multiplets are 
exactly the same for all three terms. We take each meson state as the 
superposition of states having the same QN's, one from each of the terms in 
(118). The charm and strangeness of the states are derived uniquely from b/7. 

The l[' and l'l products form the meson clouds of the baryons, and are 
discussed in Section 10. 

According to (114), (115), and (116) each of the three terms in (118) 
yields the following IR's of u(8)= u(4)| 

(1)8| = (2, 16)63~(18)i (119) 
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If the u(8) IR's on the right-hand side of (119) are decomposed with 
respect to u(4)| u(2), one obtains (Itzykson and Nauenberg, 1966, Table C, 
pp. 118-119): 

(18)i = (24 )i | (41)T -- (2 ' ) i  of u(4) with spin 0 (120) 

(2,  16 )63 m [ (3 ,22 ,  1),5| (42)i] 

~ [(3,22, 1),5| ~ [(24)i| 

= [(2, 12),5 spin0] * [(2, 12),5 spin 1] * [(24)ispin 1 ] (121) 

The u(3) content of the u(4) IR (2, 12)15 is (Itzykson and Nauenberg, 1966, 
Table B, p. 112) 

(2, 12),5 = (2, 1)8Co)*(13)ho)@(2, 12)3(-,)*(13)$(+,) (122) 

where the subscripts n(C) designate the dimension n of the u(3) IR and its 
charm C. 

The PV mesons resulting from (119) belong to the last two u(4) 
multiplets of (121). Their content in terms of bb, ll, and l'[' is given below. 
The same expressions are applicable to the ~S o- and 3S 0- states. 

(2, 1)st0 ) of u(3): 

p - : [ n p , e  u~,e ~e], P+:[PH, Uee+,ge e+] 

p~ 2-1/2[nff-- pp,e e+ --l, Ue,e e+--u~ffe] 

~o 8 = 6-1/2[nH + pfi-- sg, e-e + + Pe~e -- 2/z-/1 + , 

e - e  + + b'e~ e --2p~ff~] (123) 

K*~ e-tx+,v,~e], 

K*-=[s /7 , /~  Ve,e ~], 

(13)T(0) of u(3): 

K *+ = [ pg, pe~[~+, p.e + ] 

/~'*~ : [ s H , / ~ - e  + , pe~/~] 

~l=3-1/2[nH+pfi+sg, e-e + + pe~e + p - F + ,  e - e  + + PeEe + V~E~,] 

(124) 

The physical states o~(783) and q,(1020) are mixtures of ~8 and ~l, as 
usual. 
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(13)3(1) of u(3): 

D,0--[cf, e-], 

(2, 12)3(_1) of u(3): 

F * -  = [ Fs, v~t* ,1~ ~] 

D * - - = [ F n , r  ,#  77e], 

(24)i(0) of u(4): 

D*+ =[cf f ,  v~e+,lX+ Ve] (125) 

D*~  ] (126) 

W o = � 8 9  e - e  + +G~e+l~-~t  + + v~ffu] (127) 

The physical state qJ(3100)= [cF,#-i~ +, yule] is a mixture of 0~ 

~1~ r 
The l[ and l'[" contents are identical for p-+, F* • and Wo. 
The T(9460) meson is obtained at the internal u(6) level, and our 

analysis can be extended straigh_ tforwardly to this level. 
The mixing of 1[ and IT  in the meson states can be understood 

dynamically in terms of an exchange of a "virtual photon" (103), as in 

K ,+ = vet, + = Ve(e+a) = (Vea)e + = v~,e + 

or in terms of a virtual annihilation-creation process e -e  + = G~Te, as in 

K *~ = e-tz + = e - ( e  + Ve~e) = ( e - e  + )VeFe 

= (P eP e )P e~ e  = (PeP eP e )~ e  = P, ttPe 

The PS mesons can be generated from b/~ in the IS 0 state for strong 
binding. For magnetic binding, however, L > 0, and the simplest way they 
can be generated is by means of the formula 

Mps=[(bb~l[@l ' [ '  ) in "3Po.,.2] | [(v~ ) in 3D,-] (128) 

with L = 0 between the two factors in the tensor product. The second factor 
is the lightest component of the u(4) singlet (127), and does not affect the 
u(4) QN's of the first factor. Since the total parity of the first factor is even, 
that of the second is odd, and the orbital parity of the two factors is even, 
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the total parity of Mps is odd. The content of the first factor in terms o f f f i s  
exactly the same as in (123)-(127). The usual symbols for Mps are 

~r-'~176176176176 (129) 

These, as well as the corresponding M p v ,  are  shown in Figure 4. The 
additional vff pair in PS mesons (128) is analogous to the so-called qE/-sea 
terms in the quark model. This also helps to explain the decay channels of 
the mesons in a simple way- - fo r  example, the preference of the decay 
rr --,/1 v, overqr --,e v e. 

(c E ~ v~, ;~, ,/z-p. + ) 
@ 

u(4)singlet X(2850), ~ (3095 )  

(n ~ ,.e-/.L +, vp; e) (p ~, ve/~ + , vv.e +) 

(n ~, e-~,)~Tr.p_~'!, ("r~ ' C~ (-.'tp+)~ ( 

( ~ S,~e/z-, FFe-) ~ S ,  e+/z-, ~/~Ve ) 

u(3) singlet -91(958), ~b(10201 

, ",,~ e+ ) 

( C- n ,'~,e-, ~-~e) (.e p, ~p,~e, k ~-e§ ) 

,~ 7 

(.~s ,,~,. u; #o,.) ~.c ~, ",., ~e, p.+e-) ( e ~,, ,v,~e; ~+,,. ) 

Fig. 4. The pseudoscalar and pseudovector mesons. 
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10 .  B A R Y O N S  

The observable baryon multiplets can be generated by 

B = b | 1 7 4  (130) 

with the intuitive interpretation that b is the "bare"  core defined by (1 15), 
and M ' =  l[' is the meson "cloud" around it. 

Since b, l, and/-' are distinct u(4) quartets (even though l a n d / '  consist 
of the same leptons), the baryon states are produced of three elements, one 
from each quartet. In this sense, our construction simulates the colored 
quark model construction 

B = q(green) | q(blue) @ q(red) (131) 

However, "color" is not an extra degree of freedom in our theory. The 
complete correspondence between b, 1, /-' and the quarks is given in Table 
III. The electric charges of the particles in Table III are in exact  agreement 
with those of the integrally charged Han-Nambu  quarks (Hendry and 
Lichtenberg, 1978, Table 2, p. 1713; cf. Han and Nambu, 1965). Moreover, 
the average charge (Q)  of any three particles of the same flavor, is identical 
with the charge of the Gell-Mann-Zweig fractionally charged quark of the 
same flavor. 

Since/-' is a basis of the IR (1)8 of (112), M' belongs to the following 
IR's of u(8): 

M , =  l| = (1)8| = (2)36@(12)28 (132) 

Thus, 

B = [b(1)8 | M'(2)36] @ [b(1)8 | 12 )28] 

= [(3),20@(2, 1)168 ] @ [(2 ,  1)168@(13 )56] (133) 

TABLE III. Correspondence between b,/, [', and Quarks 

b / [' 

u p Ve e + 2/3 
d n e- ff~ - 1/3 
s s o #- v% - I/3 
c c + v~ # 2/3 

Flavor ~ Green Blue Red (Q) 
~ / " ~  Color 
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The U(4)internal| n decompositions of the resulting IR's are (Itzykson 
and Nauenberg, 1966, Table C, p. 115): 

(3) ,2o = (2, l)2ospin �89 @ (3)2o spin 3 (134a) 

(2, 1),68 = ( 13 )4 spin�89 @ (3)20 spin�89 

@ (2, 1)20 spin�89 @ (2, 1)20 spin~ (134b) 

(13)56 = (13)~spin)@(2, 1)2ospin �89 (134c) 

Finally, the u(3) decompositions of the u(4) IR's on the right-hand side of 
(134) are (Itzykson and Nauenberg, 1966, Table B, p. 112): 

(2, 1)20 : (2, 1)8m)~(2)6t,~@(12)~l)@(1)3cz, 

(3)20 : (3),om)@(2)6tl,~(l)3~2)~('),O) (135) 

(13)a = (13)hol~(lZ)~{,, 

The subscripts n ( C )  denote the dimension n and charm C of the u(3) IR's. 
In order to figure out the precise content of (135) we note that the 

u(4) | u(2) decompositions of M' are 

M'(2)36 = ( 12 )6 spin 0 @ (2)m spin 1 

M'(12)28 = (2)mspin0@(12)6spin 1 (136) 

Moreover, the u(3) decompositions of the u(4) multiplets on the right-hand 
side of (136) are 

(12)6 = (12)~(1)3 ,  

From (137), the product l(u~, e ,/~ 
listed in Table II, we obtain 

(2)m = (2)6@(1)3@(.), (137) 

- - '  | + - v~,;/*+)4 and theQN's  ,v~,)4 l ( e  , v  e, 

(12 = M ' ( 2 - , / 2 ( e - e  + _ ; t - e +  , " -  re)5,0, 

@ M ' ( v d  1+ , e-/-t+ ; P'-/~+ )3tl~ 

(2),0 = M ' ( v e e  + , ~r '~ ---- 2 - , / 2 ( e - e  + _ ve~e), e -  ~ ;  VeV~,, e 

- -  ( ~  t _i_ 
*M'(vue+,v~,~;vuv~,)3( , , .  M (Vul~ )t(2, 

(138a) 

(138b) 
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Fig. 5. (a) The baryon u(4) multiplets (2, I)~ o and (2, 1)2 o. 
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Fig. 5. (b) The baryon u(4) multiplet (3)2 0. (c) The baryon u(4) multiplet (13);. 
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Each term in (138) is a u(3) multiplet n(C). Within each term, the isospin 
multiplets are separated by semicolons, and ordered in decreasing value of 
Y; and for each isomultiplet, the M'  states are listed in decreasing value of 
13. It is important to note that the leptons in (138) have the QN's of l and 
the antileptons of [% Thus although the constituents are the same as in 
Figure 4, the states are different, as indicated by the label M'. 

Finally, multiplying b(p, n; s)3<0 ) and b(c)ltl ~ by (138), we obtain the 
baryon multiplets shown in Figure 5, and classified as indicated by (135). 
These sets of multiplets occur several times with spins 1/2 and 3 /2  as given 
in (134). 

In Figure 5a, the u(4) multiplet (2, 1)20 occurs twice. In the occurrence 
on the right-hand side, the total mass of the constituents of each state is 
less than that of the corresponding state on the left-hand side occur- 
rence. For this reason, we identify the well-known baryon spin- l /2  octet 
B(P, N; ~._~,0; A; .20.-) with the 8(0) u(3)-multiplet of the (2, 1)20 IR of 
u(4). The baryon spin-3/2 decouplet B(A, E*, -*, ~) is identified with the 
10(0) u(3)-multiplet of the (3)20 IR of u(4). Both of these multiplets belong 
to the (3)5 6 IR of zero-charm baryons of u(6), which in turn belongs to the 
(3)120 IR of u(8) given in (134a). 

As in Section 8, the combination of the baryon core b with its cloud M' 
leads to an 0(4,2) algebra. It has been shown (Barut, 1968b-d) that this 
algebra can produce the correct baryon mass spectrum. 

11. HIGHER SPIN STATES AND REGEE TRAJECTORIES 

The hadron states constructed in Sections 9 and 10 were assumed to be 
in the lowest possible energy state. By considering orbital excitations, one 
can generate a sequence of states with the same u(4) QN's and higher values 
of J. 

The masses of these states can be calculated from, e.g., infinite compo- 
nent wave equations, whose parameters contain the dynamical information 
about the interaction of the constituents. Linear Regge trajectories can be 
obtained in this way, as shown in Barut and Reczka (1977, p. 613). 

Another approach to the higher angular momentum states, is the 
dynamical approach, such as that used in Barut (1980c). For example, the 
magnetic forces between the leptons e , Pe can be used to obtain p, A:, etc. 

The fact that these two approaches, one dynamical and the other via a 
wave equation, are possible and identical, has been demonstrated in the case 
of known composite systems such as the hydrogen atoms. These problems 
will be discussed separately. 
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12. C O N C L U D I N G  R E M A R K S  

There are several important  results that emerge from the present work: 
(a) The four basic pure Dirac fermion states e - ,  u~, n, p form a basis of 

the IR  of the Clifford algebra Cv. 
(b) All observed particle states can be generated from tensor products  

of  C v by itself, along with an orbital o(4,2) algebra. Thus in effect, all 
particles are constructed from the four particles e - ,  u e, n, p. 

The introduct ion of the bare neutron n as a building block alongside 
the three particles e - ,  ~'e, P, is a consequence of the use of  C v. There are 
models (Barut, 1980c) in which n is first constructed from p e -  ~ ,  and then 
used as a building block. 

(c) The isodoublets ( ~ - ,  u , ) , ( r - ,  u,) . . . . .  are shown to be excited states 
of ( e - ,  u~); and (s, c) ,(b,  t) . . . . .  are shown to be excited states of  (n, p).  

(d) The elements of the sequence of lepton isodoublets (e - ,u~) ,  
(/~-, u~),(~'-, u,) . . . .  are distinguished by the same QN that distinguishes the 
elements of  the sequence of bare baryons  (n, p ) , ( s ,  c) ,(b,  t) . . . . .  

(e) The u(4) quartets ( n , p , s ;  c) , (e- ,~'~, t~-;  ~',),(e+, I'~, 1,,;/~ +)  are in 
one- to-one correspondence with the integrally charged colored H a n - N a m b u  
quarks in construct ing the hadrons.  

(f) All particle multiplets derived in this work are the same as those 
obtained in the quark model. 
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